Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Food Sci ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578126

RESUMO

Drying is a widely recognized process that reduces the need for storage and shipping weight, keeps free water out of the product, and prolongs its shelf life. An infrared dryer was designed to dry apples under different drying conditions. Apple slices of 6-, 4-, and 2-mm thicknesses were dried at intensities 0.130, 0.225, and 0.341 W/cm2 and airflow 1.0, 0.5, and 1.5 m/s. The dehydrating period was prolonged with higher airflow and shortened with higher infrared intensity (IR). The shortest dehydrating period was verified by 190 min at 0.341 W/cm2, 0.5 m/s under 2 mm thickness. Increasing the sample thickness from 2 to 4 mm and then to 6 mm resulted in an 84% and 192% increase in drying time, respectively. Dehydrated apples had water activity values ranging from 0.30 to 0.40. The shrinkage ratio increased with an increase in infrared radiation intensity. However, it decreased with an increase in air velocity, while the rehydration ratio decreased with an increase in radiation intensity and increased with an increase in air velocity. Regarding total color change, apple slice thickness was a major factor. The effective diffusivities varied between 2.6 and 9.0 𝗑10-10 m2/s under different drying conditions. The dehydrating curves of apples were best described by the model developed by Midilli et al.

2.
J Food Sci ; 89(3): 1658-1671, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38317418

RESUMO

The drying features of apples at different infrared drying settings were investigated. The drying time, moisture-effective diffusion, and activation energy of infrared dried apples were measured experimentally and statistically as a function of slice thicknesses, radiation intensity, and air velocity. The infrared intensity of 0.225, 0.130, and 0.341 W/cm2 , slice thicknesses of 6, 4, and 2 mm, and airflow of 0.5, 1.0, and 1.5 m/s were used to dry apple slices. The data shows that the drying time reduced as IR increased, but airflow and slice thickness increased. Eight statistical factors were used to compare 11 alternative mathematical drying models. The experimentally acquired drying curves were matched to the thin-layer drying equations. According to the calculations, the Midilli et al. equation had the greatest (efficiency and R2 ) and lowest (χ2 , sum of squared errors, standard error of estimate, standard error, standard deviation of difference) values. As a result, this equation is the best for modeling the drying curves of apple slices across all drying circumstances. The optimum moisture diffusivity value varied from 2.59 to 9.07 × 10-10  m2 /s. The mean activation energy was determined to be 19.02-29.83 kJ/mol under various experimental conditions.


Assuntos
Malus , Água , Dessecação , Modelos Teóricos , Difusão
3.
Heliyon ; 10(2): e24447, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38293436

RESUMO

Commercial lactic acid bacteria strains and indigenous Chinese acetic acid bacterium were co-cultivated bi- and tri-culturally in Junzao jujube puree for the first time to investigate their effects on physicochemical properties and quality attributes. Lactic-acetic acid bacteria co-fermentation was performed at 37 °C for 48 h during the anaerobic fermentation phase and at 30 °C for 144 h during aerobic fermentation. FTIR results showed that predominant wave numbers at 1716-1724 cm-1 and 2922-3307 cm-1 exhibited discernible alterations in the lactic-acetic acid co-fermented jujube purees compared to the control sample. Pearson correlation analysis showed that the flavonoid and flavonol contents were responsible for the enhanced 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) and 2,2-diphenyl-1-picrylhydrazyl scavenging activities of the fermented jujube purees. Consequently, fermented jujube puree from tricultures of Lactobacillus casei, Lactobacillus plantarum, and Acetobacter pasteurianus gave the best results, with the highest phenolics, flavonoid, and flavonol contents and the most improved antioxidative properties and color. Overall, lactic-acetic acid bacteria co-culture holds significant promise in valorizing Junzao jujube purees for functional ingredient development, paving the way for further research into similar interactions with different food matrices or microbial strains.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA